QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES

QUEEN'S UNIVERSITY

Electro-photo generation of highly reducing radical anions for CO₂ activation

Nia Foster, Peter Robertson and Paul Kavanagh

Electrophotochemistry

The catalyst is first oxidised or reduced at the electrode, then excited to a radical state using light.

Electrochemistry Study

We wanted to accurately measure three electrochemical properties of a range of electrocatalysts:

The k° value is reported less frequently in papers, however it is very important as it represents the electrochemical reversibility of the catalyst. A high k° means a more reversible catalyst.

Previously, using the Randles-Sevcik equation on irreversible reactions provides inaccurate results as it assumes the reactions are reversible, therefore we turn to using the Nicholson method¹ with rotational disc voltammetry (RDV) to calculate reproducible and accurate values.

Acknowledgements

Electrophotocatalyst Results

To confirm accuracy of the results, we used DigiSim software to simulate CV and RDV scans:

Future Plans

Catalysts will be tested under UV light to observe their photoactivity. These are some preliminary results for reducing carbon dioxide using an electrophotocatalytic system.

References:

- 1. Magno et al., Electroanalysis 2004, 16, 505. .
- 2. Moutet and Reverdy, Chem. Commun, 1982, 654-655.